Mediation effect and metabolic pathways of gut microbiota in the associations between lifestyles and dyslipidemia

0
Mediation effect and metabolic pathways of gut microbiota in the associations between lifestyles and dyslipidemia
  • Pirillo, A., Casula, M., Olmastroni, E., Norata, G. D. & Catapano, A. L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 18, 689–700 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joint Committee on the Chinese Guidelines for Lipid M. [Chinese guidelines for lipid management (2023)]. Zhonghua Xin Xue Guan Bing Za Zhi. 51, 221–255 (2023).

  • Hasheminasabgorji, E. & Jha J. C. Dyslipidemia, diabetes and atherosclerosis: role of inflammation and ROS-redox-sensitive factors. Biomedicines. 9, 1602 (2021).

  • Collaboration NCDRF Repositioning of the global epicentre of non-optimal cholesterol. Nature 582, 73–77 (2020).

    Article 

    Google Scholar 

  • Baik, I. Dietary and modifiable factors contributing to hyper-LDL-cholesterolemia prevalence in nationwide time series data and the implications for primary prevention strategies. Nutr. Res. Pract. 14, 62–69 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, R. B. & Ducatman, A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged >/=20 years. J Circ Biomark. 7, 1849454418779310 (2018).

  • Ye, X. F., Miao, C. Y., Zhang, W., Ji, L. N. & Wang, J. G. investigators A. Alcohol intake and dyslipidemia in male patients with hypertension and diabetes enrolled in a China multicenter registry. J. Clin. Hypertens.25, 183–190 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zou, Q. et al. Longitudinal Association between physical activity, blood lipids, and risk of dyslipidemia among chinese adults: findings from the China Health and Nutrition Surveys in 2009 and 2015. Nutrients. 15, 341 (2023).

  • Norris, G. H. & Blesso, C. N. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr. Rev. 75, 274–285 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Antinozzi, M. et al. Cigarette smoking and human gut microbiota in healthy adults: a systematic review. Biomedicines. 10, 510 (2022).

  • Torquati, L. et al. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur. J. Sport Sci. 23, 530–541 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bjorkhaug, S. T. et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes 10, 663–675 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. & Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7, 2839–2849 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. Multi-trajectories of body mass index, waist circumference, gut microbiota, and incident dyslipidemia: a 27-year prospective study. Res. Sq. rs.3, 4251069 (2024).

  • Thomas, M. S. et al. Dietary influences on gut microbiota with a focus on metabolic syndrome. Metab. Syndr. Relat. Disord. 20, 429–439 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lv, J. et al. Adherence to healthy lifestyle and cardiovascular diseases in the Chinese population. J. Am. Coll. Cardiol. 69, 1116–1125 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nudelman, G., Kalish, Y. & Shiloh, S. The centrality of health behaviours: a network analytic approach. Br. J. Health Psychol. 24, 215–236 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, X. et al. China multi-ethnic cohort collaborative g. Cohort Profile: the China multi-ethnic cohort (CMEC) study. Int. J. Epidemiol. 50, 721–721l (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yang, S. et al. Development and validation of an age-sex-ethnicity-specific metabolic syndrome score in the Chinese adults. Nat. Commun. 14, 6988 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, H. et al. Associations of residential physical activity development trajectory with carotid plaque. Prev. Med. 50, 4497–4502 (2023).

    Google Scholar 

  • Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Machine learning framework for gut microbiome biomarkers discovery and modulation analysis in large-scale obese population. BMC Genomics 23, 850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiu, C. M. et al. Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches. Biomed. Res. Int. 2014, 906168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Michels, N. et al. Human microbiome and metabolic health: an overview of systematic reviews. Obes. Rev. 23, e13409 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, C. et al. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell 187, 1834–1852 e1819 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folcik, V. A. & Cathcart, M. K. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. J. Lipid Res. 35, 1570–1582 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, U. N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J. Adv. Res 11, 43–55 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roman, R. J. P. -450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horrillo, R. et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 184, 3978–3987 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sacerdoti, D., Gatta, A. & McGiff, J. C. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat. 72, 51–71 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S., Su, W., Zhang, X. Y. & Guan, Y. F. [Arachidonic acid metabolism in liver glucose and lipid homeostasis]. Sheng Li Xue Bao 73, 657–664 (2021).

    PubMed 

    Google Scholar 

  • Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seldin, M. M. et al Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 5, e002767 (2016).

  • Li, X. et al. Effect of Lactobacillus plantarum HT121 on serum lipid profile, gut microbiota, and liver transcriptome and metabolomics in a high-cholesterol diet-induced hypercholesterolemia rat model. Nutrition 79-80, 110966 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. Eight weeks of bifidobacterium lactis BL-99 supplementation improves lipid metabolism and sports performance through short-chain fatty acids in cross-country skiers: a preliminary study. Nutrients. 15, 4554 (2023).

  • Hibberd, A. A. et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef. Microbes 10, 121–135 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, J., Rimal, B., Jiang, C., Chiang, J. Y. L. & Patterson, A. D. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharm. Ther. 237, 108238 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xu, W., Kong, Y., Zhang, T., Gong, Z. & Xiao, W. L-Theanine regulates lipid metabolism by modulating gut microbiota and bile acid metabolism. J. Sci. Food Agric. 103, 1283–1293 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jie, L. et al. The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats. Front. Med.10, 1153360 (2023).

    Article 

    Google Scholar 

  • Deng, K. et al. Comparison of fecal and blood metabolome reveals inconsistent associations of the gut microbiota with cardiometabolic diseases. Nat. Commun. 14, 571 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bugajska, J., Berska, J., Wójcik, M. & Sztefko, K. Amino acid profile in overweight and obese prepubertal children – can simple biochemical tests help in the early prevention of associated comorbidities?. Front. Endocrinol.14, 1274011 (2023).

    Article 

    Google Scholar 

  • Kim, M. J., Sim, D. Y., Lee, H. M., Lee, H. J. & Kim S. H. Hypolipogenic Effect of Shikimic Acid Via Inhibition of MID1IP1 and Phosphorylation of AMPK/ACC. Int. J. Mol. Sci. 20, 582 (2019).

  • Askari, A. A. et al. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells. Biochem. Biophys. Res. Commun. 446, 633–637 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crost, E. H., Coletto, E., Bell, A. & Juge, N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol. Rev. 47, fuad014 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Soest, A. P. M. et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in dutch healthy older adults: the NU-AGE Study. Nutrients. 12, 3471 (2020).

  • Ma, E. et al. Long-term association between diet quality and characteristics of the gut microbiome in the multiethnic cohort study. Br. J. Nutr. 1–10 (2021).

  • Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, B., Echchgadda I. & Seog Song C. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. In: Methods Enzymol. Academic Press, 165–191 (2005).

  • Chaudhari, S. N. et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 29, 408–424.e407 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robben, J., Janssen, G., Merckx, R. & Eyssen, H. Formation of delta 2- and delta 3-cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain. Appl. Environ. Microbiol. 55, 2954–2959 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antharam, V. C. et al. An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in clostridium difficile infection. PLoS ONE11, e0148824 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gophna, U., Konikoff, T. & Nielsen, H. B. Oscillospira and related bacteria – from metagenomic species to metabolic features. Environ. Microbiol. 19, 835–841 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parker, B. J., Wearsch, P. A., Veloo, A. C. M. & Rodriguez-Palacios, A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 11, 906 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePhillips, C., Parikh, P. B. & Stevens, G. A. Dyslipidemia: current therapies and strategies to overcome barriers for use. J. Nurse Pract.17, 1167–1173 (2021).

    Article 

    Google Scholar 

  • Wang, L., Zhang, L., Zhang, Y. & Li, J. P. Impact of allogenic fecal microbiota transplantation (FMT) on lipid parameters in patients with metabolic syndrome (MetS): a meta-analysis. Eur. Heart J. 45, ehae666.3361 (2024).

    Article 

    Google Scholar 

  • Mederle, A. L. et al. Impact of gut microbiome interventions on glucose and lipid metabolism in metabolic diseases: a systematic review and meta-analysis. Life 14, 1485 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qu, Q. et al. Population-level gut microbiome and its associations with environmental factors and metabolic disorders in Southwest China. NPJ Biofilms Microbiomes 11, 24 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, N. et al. Prevalence of ‘healthy lifestyle’ in Chinese adults. Chin. J. Epidemiol. 40, 136–141 (2019).

    CAS 

    Google Scholar 

  • World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. (2018).

  • Du, H. et al. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: the China Kadoorie Biobank study. Am. J. Clin. Nutr. 97, 487–496 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, W. et al. Rural-urban disparities in the associations of residential greenness with diabetes and prediabetes among adults in southeastern China. Sci. Total Environ. 860, 160492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ainsworth, B. E. et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Craig, C. L. et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35, 1381–1395 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U354 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. H., Liu, C. M., Luo, R. B., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Navarro-Reig, M., Jaumot, J., García-Reiriz, A. & Tauler, R. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 407, 8835–8847 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garralda-Del-Villar, M. et al Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort. Nutrients. 11, 65 (2018).

  • Sun, Q. et al. Healthy lifestyle and life expectancy at age 30 years in the Chinese population: an observational study. Lancet Public Health 7, e994–e1004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes 7, 71 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeong, S. et al. Cognitive function associated with gut microbial abundance in sucrose and s-adenosyl-l-methionine (SAMe) metabolic pathways. J. Alzheimers Dis. 87, 1115–1130 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, Y. et al. Lifestyle patterns influence the composition of the gut microbiome in a healthy Chinese population. Sci. Rep. 13, 14425 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *