Plasma markers of neurodegeneration, latent cognitive abilities and physical activity in healthy aging

0
Plasma markers of neurodegeneration, latent cognitive abilities and physical activity in healthy aging
  • Hansson, O. et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimer’s Dementia18, 2669–2686 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Schindler, S. E. & Bateman, R. J. Combining blood-based biomarkers to predict risk for Alzheimer’s disease dementia. Nat. Aging1, 26–28. (2021).

    PubMed 

    Google Scholar 

  • Simrén, J. et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimer’s & Dementia17, 1145–1156. (2021).

    CAS 

    Google Scholar 

  • Chatterjee, P. et al. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: A cross-sectional and longitudinal study in the AIBL cohort. Alzheimer’s Dementia19, 1117–1134. (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Cullen, N. C. et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat. Commun.12, 3555. (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simrén, J. et al. The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer’s disease. Alzheimer’s Dementia17, 1145–1156 (2021).

    PubMed 

    Google Scholar 

  • Scheltens, P. et al. Alzheimer’s disease. Lancet388, 505–517. (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Chatterjee, P. et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl. Psychiatry11, 27. (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol.14, 577–589. (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Mattsson, N. et al. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol. Med.8, 1184–1196 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pais, M. V., Forlenza, O. V. & Diniz, B. S. Plasma biomarkers of Alzheimer’s disease: A review of available assays, recent developments, and implications for clinical practice. J. Alzheimers Dis. Rep.7, 355–380 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin?. Sci. Transl. Med.6, 228fs213 (2014).

    Google Scholar 

  • Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s & Dementia: Transl. Res. Clin. Interv.9, e12385. (2023).

    Google Scholar 

  • Dantas, J. M. et al. Efficacy of anti-amyloid-ß monoclonal antibody therapy in early Alzheimer’s disease: A systematic review and meta-analysis. Neurol. Sci. (2023).

    PubMed 

    Google Scholar 

  • van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med.388, 9–21. (2022).

    PubMed 

    Google Scholar 

  • Brown, B. M., Peiffer, J. J. & Martins, R. N. Multiple effects of physical activity on molecular and cognitive signs of brain aging: Can exercise slow neurodegeneration and delay Alzheimer’s disease?. Mol. Psychiatry18, 864–874. (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Sujkowski, A., Hong, L., Wessells, R. J. & Todi, S. V. The protective role of exercise against age-related neurodegeneration. Ageing Res. Rev.74, 101543. (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet385, 2255–2263. (2015).

    PubMed 

    Google Scholar 

  • Zhang, X. et al. Effect of physical activity on risk of Alzheimer’s disease: A systematic review and meta-analysis of twenty-nine prospective cohort studies. Ageing Res. Rev.92, 102127. (2023).

    PubMed 

    Google Scholar 

  • Blondell, S. J., Hammersley-Mather, R. & Veerman, J. L. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health14, 510. (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sofi, F. et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med.269, 107–117. (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Du, Z. et al. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging13, 1593–1603. (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, R.-X., Liang, J.-H., Xu, Y. & Wang, Y.-Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis. BMC Geriatrics19, 181. (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forbes, D., Forbes, S. C., Blake, C. M., Thiessen, E. J. & Forbes, S. Exercise programs for people with dementia. Cochrane Database Syst. Rev.2015(50), 9–18 (2015).

    Google Scholar 

  • Ciria, L. F. et al. An umbrella review of randomized control trials on the effects of physical exercise on cognition. Nat. Hum. Behav.7, 928–941. (2023).

    PubMed 

    Google Scholar 

  • Brown, B. M., Peiffer, J. & Rainey-Smith, S. R. Exploring the relationship between physical activity, beta-amyloid and tau: A narrative review. Ageing Res. Rev.50, 9–18. (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Maugeri, G. et al. Neuroprotective effects of physical activity via the adaptation of astrocytes. Cells10, 1542 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adlard, P. A., Perreau, V. M., Pop, V. & Cotman, C. W. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J. Neurosci. : Off. J. Soc. Neurosci.25, 4217–4221 (2005).

    CAS 

    Google Scholar 

  • Liu, H. L., Zhao, G., Zhang, H. & Shi, L. D. Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav. Brain Res.256, 261–272. (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, B. M. et al. Physical activity and amyloid-β plasma and brain levels: Results from the Australian imaging, biomarkers and lifestyle study of ageing. Mol. Psychiatry18, 875–881. (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, K. Y. et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann. Neurol.68, 311–318 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raffin, J. et al. Associations between physical activity, blood-based biomarkers of neurodegeneration, and cognition in healthy older adults: The MAPT study. J. Gerontol.: Ser. A76, 1382–1390. (2021).

    CAS 

    Google Scholar 

  • Frederiksen, K. S., Gjerum, L., Waldemar, G. & Hasselbalch, S. G. Physical activity as a moderator of alzheimer pathology: A systematic review of observational studies. Curr. Alzheimer Res.16, 362–378. (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Rabin, J. S. et al. Associations of physical activity and β-amyloid with longitudinal cognition and neurodegeneration in clinically normal older adults. JAMA Neurol.76, 1203–1210 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Desai, P. et al. Longitudinal association of total tau concentrations and physical activity with cognitive decline in a population sample. JAMA Netw. Open4, e2120398–e2120398. (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Desai, P. et al. Examination of neurofilament light chain serum concentrations, physical activity, and cognitive decline in older adults. JAMA Netw. Open5, e223596 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sallis, J. F. & Saelens, B. E. Assessment of physical activity by self-report: status, limitations, and future directions. Res. Q. Exerc. Sport71(Suppl 2), 1–14. (2000).

    PubMed 

    Google Scholar 

  • Nilsson, J., Ekblom, M. & Lövdén, M. Associations of cardiorespiratory fitness and moderate-to-vigorous physical activity with latent cognitive abilities in older adults. Psychol. Sport Exerc.60, 102171. (2022).

    Google Scholar 

  • Kukull, W. A. et al. The Mini-Mental State Examination score and the clinical diagnosis of dementia. J. Clin. Epidemiol.47, 1061–1067. (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Nilsson, J. et al. Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci. Rep.10, 1–15 (2020).

    Google Scholar 

  • Tarassova, O., Ekblom, M. M., Moberg, M., Lövdén, M. & Nilsson, J. Peripheral BDNF response to physical and cognitive exercise and its association with cardiorespiratory fitness in healthy older adults. Front. Physiol.11, 1080 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Verberk, I. M. W. et al. Characterization of pre-analytical sample handling effects on a panel of Alzheimer’s disease-related blood-based biomarkers: Results from the Standardization of Alzheimer’s Blood Biomarkers (SABB) working group. Alzheimer’s & dementia : J. Alzheimer’s Assoc.18, 1484–1497 (2022).

    CAS 

    Google Scholar 

  • Bezuidenhout, L., Thurston, C., Hagströmer, M. & Moulaee Conradsson, D. Validity of hip and ankle worn actigraph accelerometers for measuring steps as a function of gait speed during steady state walking and continuous turning. Sensors21, 3154 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasaki, J. E., John, D. & Freedson, P. S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport14, 411–416. (2011).

    PubMed 

    Google Scholar 

  • Aguilar-Farías, N., Brown, W. J. & Peeters, G. M. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J. Sci. Med. Sport17, 293–299. (2014).

    PubMed 

    Google Scholar 

  • Choi, L., Liu, Z., Matthews, C. E. & Buchowski, M. S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc.43, 357–364 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, L., Ward, S. C., Schnelle, J. F. & Buchowski, M. S. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med. Sci. Sports Exerc.44, 2009–2016 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallgren, K. A., McCabe, C. J., King, K. M. & Atkins, D. C. Beyond path diagrams: Enhancing applied structural equation modeling research through data visualization. Addict. Behav.94, 74–82 (2019).

    PubMed 

    Google Scholar 

  • He, L. et al. Plasma neurofilament light chain is associated with cognitive decline in non-dementia older adults. Sci. Rep.11, 13394. (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mielke, M. M. et al. Plasma and CSF neurofilament light: Relation to longitudinal neuroimaging and cognitive measures. Neurology93, e252–e260 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kartau, M. et al. Neurofilament light level correlates with brain atrophy, and cognitive and motor performance. Front. Aging Neurosci.14, 939155. (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyberg, L. et al. Elevated plasma neurofilament light in aging reflects brain white-matter alterations but does not predict cognitive decline or Alzheimer’s disease. Alzheimer’s & Dementia: Diagn. Assess. Dis. Monitor.12, e12050. (2020).

    Google Scholar 

  • Leeuw, F.-E. et al. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The rotterdam scan study. J. Neurol. Neurosurg. Psychiatry70, 9–14. (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, I. J. & Madden, D. J. Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience276, 187–205 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B. & Walhovd, K. B. The disconnected brain and executive function decline in aging. Cereb. Cortex27, 2303–2317. (2017).

    PubMed 

    Google Scholar 

  • Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex; J. Devoted Study Nerv. Syst. Behav.86, 186–204. (2017).

    Google Scholar 

  • Molteni, R., Zheng, J. Q., Ying, Z., Gómez-Pinilla, F. & Twiss, J. L. Voluntary exercise increases axonal regeneration from sensory neurons. Proc. Natl. Acad. Sci. United States Am.101, 8473–8478 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Markus, A., Patel, T. D. & Snider, W. D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobio.12, 523–531. (2002).

    CAS 

    Google Scholar 

  • Lamb, S. E. et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: Randomised controlled trial. BMJ361, k1675. (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Objectively-measured movement behaviors, systemic low-grade inflammation, and plasma neurofilament light chain in older adults: A population-based study. Immun. Ageing20, 36. (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noack, H., Lovden, M. & Schmiedek, F. On the validity and generality of transfer effects in cognitive training research. Psychol. Res.78, 773–789. (2014).

    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *