Isotemporal substitution of accelerometer-derived sedentary behavior and physical activity on physical fitness in young children

0
  • Campbell, N., Jesus, S. & Prapavessis, H. Physical fitness. Encyclopedia of Behavioral Medicine 1486–1489 (2013).

  • Ruiz, J. R. et al. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 43, 909–923 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ortega, F. B. et al. Fitness and fatness as health markers through the lifespan: An overview of current knowledge. Prog. Prev. Med. 3, e0013 (2018).

    Article 

    Google Scholar 

  • Morales-Demori, R., Jamil, O. & Serratto, M. Trend of endurance level among healthy inner-city children and adolescents over three decades. Pediatr. Cardiol. 38, 123–127 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tomkinson, G. R. & Olds, T. S. Secular changes in pediatric aerobic fitness test performance: The global picture. J. Diabetes Res. 50, 46–66. (2007).

    Article 

    Google Scholar 

  • Andersen, L. B. et al. A new approach to define and diagnose cardiometabolic disorder in children. J. Diabetes Res. 2015, 1–10 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ornelas, R. T., Silva, A. M., Minderico, C. S. & Sardinha, L. B. Changes in cardiorespiratory fitness predict changes in body composition from childhood to adolescence: Findings from the European youth heart study. Phys. Sportsmed. 39, 78–86 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pontifex, M. B. et al. The differential association of adiposity and fitness with cognitive control in preadolescent children. Monogr. Soc. Res. 79, 72–92 (2014).

    Article 

    Google Scholar 

  • Sardinha, L. B. et al. Longitudinal relationship between cardiorespiratory fitness and academic achievement. Med. Sci. Sports Exerc. 48, 839–844 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bürgi, F. et al. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: A cross-sectional and longitudinal study (Ballabeina). Int. J. Obes. 35, 937–944 (2011).

    Article 

    Google Scholar 

  • Leppänen, M. H. et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. Int. J. Obes. 40, 1126–1133 (2016).

    Article 

    Google Scholar 

  • Janssen, I. & LeBlanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and Youth. Int. J. Behav. Nutr. Phys. Act. 7, 40 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, D. et al. Physical activity guidelines 2020: Comprehensive and inclusive recommendations to activate populations. Lancet 396, 1780–1782 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tremblay, M. S. et al. Sedentary behavior research network (SBRN): Terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 14, 75 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baptista, F. et al. Prevalence of the Portuguese population attaining sufficient physical activity. Med. Sci. Sports Exerc. 44, 466–473 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Biddle, S. J. H., Pearson, N., Ross, G. M. & Braithwaite, R. Tracking of sedentary behaviours of young people: A systematic review. Prev. Med. 51, 345–351 (2010).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children Under 5 Years of Age. (2019).

  • Mekary, R. A., Willett, W. C., Hu, F. B. & Ding, E. L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 170, 519–527 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Der Velde, J. H. et al. Sedentary behavior, physical activity, and fitness—the maastricht study. Med. Sci. Sports Exerc. 49, 1583–1591 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ekblom-Bak, E. et al. Scapis Pilot Study: Sitness, fitness and fatness—is sedentary time substitution by physical activity equally important for everyone’s markers of glucose regulation?. J. Phys. Act Health 13, 697–703 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ma, J., Kim, H. & Kim, J. Isotemporal substitution analysis of accelerometer-derived sedentary behavior and physical activity on cardiometabolic health in Korean adults: A population-based cross-sectional study. Int. J. Environ. Res. Public Health 18, 11102 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J., Ma, D., Kim, J., Wang, Q. & Kim, H. Effects of substituting types of physical activity on body fat mass and work efficiency among workers. Int. J. Environ. Res. Public Health 18, 5101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tremblay, M. S. et al. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 41, iii–iv (2016).

    Article 
    PubMed 

    Google Scholar 

  • Pate, R. R. et al. Physical activity and health in children younger than 6 years: A systematic review. Med. Sci. Sports Exerc. 51, 1282–1291 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaput, J.-P., Carson, V., Gray, C. & Tremblay, M. Importance of all movement behaviors in a 24 hour period for overall health. Int. J. Environ. Res. Public Health 11, 12575–12581 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knaeps, S. et al. Ten-year change in sedentary behaviour, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: Independent associations and mediation analysis. Br. J. Sports Med. 52, 1063–1068 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Smith, E., Fazeli, F., Wilkinson, K. & Clark, C. C. Physical behaviors and fundamental movement skills in British and Iranian children: An isotemporal substitution analysis. Scand. J. Med. Sci. Sports 31, 398–404 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dooley, E. E. et al. Adiposity, cardiovascular, and health-related quality of life indicators and the reallocation of waking movement behaviors in preschool children with overweight and obesity: An isotemporal data analysis. PLoS ONE 15, e0242088 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, W. Y., Wong, S. H. S., He, G. & Salmon, J. Isotemporal substitution analysis for sedentary behavior and body mass index. Med. Sci. Sports Exerc. 48, 2135–2141 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bezerra, T. A. et al. 24-hour movement behaviour and executive function in preschoolers: A compositional and isotemporal reallocation analysis. Eur. J. Sport Sci. 21, 1064–1072 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Hyunshik, K., Jiameng, M., Sunkyoung, L. & Ying, G. Change in Japanese children’s 24-hour movement guidelines and mental health during the COVID-19 pandemic. Sci. Rep. 11, 22972 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H., Ma, J., Kim, J., Xu, D. & Lee, S. Changes in adherence to the 24-hour movement guidelines and overweight and obesity among children in northeastern Japan: A longitudinal study before and during the COVID-19 pandemic. Obesities 1, 167–177 (2021).

    Article 

    Google Scholar 

  • Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F. & Taylor, W. C. Using objective physical activity measures with youth: How many days of monitoring are needed?. Med. Sci. Sports Exerc. 32, 426 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Japan Physical Activity Research Platform. Japan Physical Activity Research Platform. (2020) (in Japanese).

  • Oshima, Y. et al. Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 31, 370–374 (2010).

    Article 
    PubMed 

    Google Scholar 

  • National Institutes of Health. SAS Programs for Analyzing NHANES 2003–2004 Accelerometer Data. (2021).

  • Ministry of Education, Culture, Sports, Science and Technology-Japan. Early Childhood Movement. (2012) (in Japanese).

  • Ministry of Education, Culture, Sports, Science and Technology-Japan. The Early Childhood Exercise Guidelines. (2012) (in Japanese).

  • De Onis, M. Who child growth standards based on length/height, weight and age. Acta Paediatr. 95, 76–85 (2006).

    Article 

    Google Scholar 

  • De Onis, M. & Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs should we use?. Int. J. Pediatr. Obese. 5, 458–460 (2010).

    Article 

    Google Scholar 

  • Barlow, S. E. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and Obesity: Summary Report. Pediatrics 120, S164–S192 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Hudda, M. T. et al. Development and validation of a prediction model for fat mass in children and adolescents: Meta-analysis using individual participant data. BMJ 366, l4293 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q., Guo, H., Chen, S., Ma, J. & Kim, H. The Association of body mass index and fat mass with health-related physical fitness among Chinese schoolchildren: A study using a predictive model. Int. J. Environ. Res. Public Health 20, 355 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, D. A., Marques, A., Minderico, C. S., Ekelund, U. & Sardinha, L. B. A cross-sectional and prospective analyse of reallocating sedentary time to physical activity on children’s cardiorespiratory fitness. J. Sports Sci. 36, 1720–1726 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Jones, M. A. et al. Associations of accelerometer-measured sedentary time, sedentary bouts, and physical activity with adiposity and fitness in children. J. Sports Sci. 38, 114–120 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jaakkola, T., Yli-Piipari, S., Huotari, P., Watt, A. & Liukkonen, J. Fundamental movement skills and physical fitness as predictors of physical activity: A 6-year follow-up study. Scand. J. Med. Sci. Sports 26, 74–81 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lima, R. A. et al. Physical activity and motor competence present a positive reciprocal longitudinal relationship across childhood and early adolescence. J. Phys. Act. Health 14, 440–447 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sugihara, T., Kondo, M., Mori, S. & Yoshida, I. Chronological change in preschool children’s motor ability development in Japan from the 1960s to the 2000s. Int. J. Sport Health Sci. 4, 49–56 (2006).

    Article 

    Google Scholar 

  • Mori, S., Sugihara, T. & Yoshida, I. Motor ability of young children from the viewpoint of a national survey in 2008. Sci. Phys. Educ. 60, 56–66 (2010) (in Japanese).

    Google Scholar 

  • Guo, H. & Kim, H. Longitudinal changes in lifestyle behaviors and physical fitness of Japanese preschoolers during the COVID-19 pandemic: Results from a 7-year longitudinal study. PeerJ (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aggio, D., Smith, L. & Hamer, M. Effects of reallocating time in different activity intensities on health and fitness: A cross sectional study. Int. J. Behav. Nutr. Phys. Act. 12, 83 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chau, J. Y. et al. Sitting ducks face chronic disease: An analysis of newspaper coverage of sedentary behaviour as a health issue in Australia 2000–2012. Health Promot. J. Austr. 28, 139–143 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Santos, R. et al. The independent associations of sedentary behaviour and physical activity on cardiorespiratory fitness. Br. J. Sports Med. 48, 1508–1512 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Gennuso, K. P., Gangnon, R. E., Matthews, C. E., Thraen-borowski, K. M. & Colbert, L. H. Sedentary behavior, physical activity, and markers of health in older adults. Med. Sci. Sports Exerc. 45, 1493–1500 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keevil, V. L. et al. Objective sedentary time, moderate-to-vigorous physical activity, and physical capability in a British cohort. Med. Sci. Sports Exerc. 48, 421–429 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jefferis, B. J. et al. Trajectories of objectively measured physical activity in free-living older men. Med. Sci. Sports Exerc. 47, 343–349 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Contardo Ayala, A. M., Salmon, J., Dunstan, D. W., Arundell, L. & Timperio, A. Does light-intensity physical activity moderate the relationship between sitting time and adiposity markers in adolescents?. J. Sport Health Sci. 11, 613–619 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tortella, P., Haga, M., Loras, H., Sigmundsson, H. & Fumagalli, G. Motor skill development in Italian pre-school children induced by structured activities in a specific playground. PLoS ONE 11, e0160244 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beets, M. W. et al. The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion. Int. J. Behav. Nutr. Phys. Act. 13, 120 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comte, M. et al. Patterns of weekday and weekend physical activity in youth in 2 Canadian provinces. Appl. Physiol. Nutr. Metab. 38, 115–119 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Vander Ploeg, K. A. et al. The importance of parental beliefs and support for pedometer-measured physical activity on school days and weekend days among Canadian children. BMC Public Health 13, 1132 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMinn, A. M., Griffin, S. J., Jones, A. P. & van Sluijs, E. M. Family and home influences on children’s after-school and weekend physical activity. Eur. J. Public Health 23, 805–810 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Associations among outdoor playtime, screen time, and environmental factors in Japanese preschoolers: The ‘eat, be active, and sleep well’ study. Sustainability 13, 12499 (2021).

    Article 

    Google Scholar 

  • Wang, Q., Ma, J., Maehashi, A. & Kim, H. The associations between outdoor playtime, screen-viewing time, and environmental factors in Chinese young children: The “eat, be active and sleep well” study. Int. J. Environ. Res. Public Health 17, 4867 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *